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SUMMARY

Free-surface multiple elimination (FSME) algorithm (Car-
valho, 1992; Weglein et al., 1997) is modified and extended
to accommodate a source (and receiver) array with a radiation
pattern. That accommodation can provide added value com-
pared to previous methods that assumed a single point source
(air-gun) for the fidelity of amplitude and phase prediction of
free surface multiples at all offsets. For the source-array data,
if all prerequisites are provided, the new algorithm has the the-
oretical capability of predicting the exact phase and amplitude
of multiples, and in principle removing them through a simple
subtraction. Green’s theorem method can provide all its data
requirements: (1) removing the reference wavefield, (2) esti-
mation of source wavelet and radiation pattern, and (3) source
and receiver deghosting. Green’s theorem method is consis-
tent with the new FSME algorithm. They are both multidi-
mensional and do not require any subsurface information. The
new FSME algorithm is tested on a 1D acoustic model, and
the results indicate that the new algorithm enhances the multi-
ple prediction when the data and experiment are caused by an
array rather than a single air-gun.

INTRODUCTION

In marine seismic exploration, multiple removal is a classic
long-standing problem. Various methods (e.g., Carvalho, 1992;
Verschuur et al., 1992; Weglein et al., 1997, 2003; Berkhout
and Verschuur, 1999; Dragoset et al., 2008) have been devel-
oped to either attenuate or eliminate free-surface multiples,
and each method has different assumptions, advantages, and
limitations. Among these methods, the inverse scattering se-
ries (ISS) FSME method (Carvalho, 1992; Weglein et al., 1997)
does not need any subsurface information, which is a big ad-
vantage, especially under conditions of complex geology. The
ISS method predicts the free-surface multiples accurately, while
the feedback-loop method (Verschuur et al., 1992) only pro-
vides approximate predictions because it ignores the obliquity
factor and retains the source-side ghost. Therefore, the ISS
method can remove the free-surface multiples through a sim-
ple subtraction, and most importantly it preserves primary en-
ergy (e.g., Carvalho, 1992; Araújo, 1994; Weglein et al., 1997),
while the feedback-loop method has to remove the multiples
adaptively using certain criteria (energy minimization, for ex-
ample). The energy minimization criterion works well when
there are no overlapping or proximal primaries and multiples
in the input data. If primaries and multiples are overlapping
and destructively interfering, the energy minimization crite-
rion can be invalid or fail and the adaptive subtraction will not
work very well.

To predict free-surface multiples precisely, the ISS method

has certain data requirements: (1) removal of the reference
wavefield, (2) an estimation of the source wavelet and radia-
tion pattern, and (3) source and receiver deghosting. Green’s
theorem wave separation methods that are consistent with the
ISS method have been applied to provide these three criteria,
since they are both multidimensional wave theoretic prepro-
cessing methods and do not need any subsurface information.
Green’s theorem methods offer a flexible framework for de-
riving a number of useful algorithms due to the freedom of
choosing a reference medium. When choosing air-water as the
reference medium, the reference wavefield and the scattered
wavefield can be seperated, and the source wavelet and radia-
tion pattern can be estimated (Weglein and Secrest, 1990; We-
glein et al., 2002). When choosing the whole space of water
as the reference medium, the ghosts can be removed. Green’s
theorem methods have been pioneered by J. Zhang (Weglein
et al., 2002; Zhang and Weglein, 2005, 2006; Zhang, 2007)
and developed by J. Mayhan (Mayhan et al., 2011, 2012; May-
han and Weglein, 2013). If all the prerequisites are provided,
Zhang (2007) has shown that the ISS FSME algorithm can pre-
dict free-surface multiples accurately for a point-source data
and remove them from the data without the need of adaptive
subtraction.

However, for source-array data, the ISS FSME algorithm is not
sufficient because this method assumes a single point source.
In other words, the source has no variation of amplitude or
phase with take-off angle. Nevertheless, in towed marine ac-
quisition, a source array is commonly used to increase the
power of the source, broaden the bandwidth, and cancel the
random noise. The source array exhibits directivity in take-off
angle (Loveridge et al., 1984). That directivity is an issue for
AVO analysis and removing or attenuating multiples. In seis-
mic processing, it is essential that we characterize the source
(and receiver) array’s effect on any seismic processing meth-
ods. Therefore, to improve the accuracy of the predicted multi-
ples, the ISS FSME algorithm is extended by accommodating
a source array. That accommodation can enhance the fidelity
of amplitude and phase prediction of free surface multiples at
all offsets.

THEORY

The ISS FSME algorithm is a fully data-driven algorithm and
does not require any subsurface information. It has the ability
to accurately predict the free-surface multiples order-by-order
and then remove them through a simple subtraction. The ISS
FSME algorithm for an isotropic point source in a 2D case is
given by (Carvalho, 1992; Weglein et al., 1997, 2003):

D′n(kg,ks,ω)

= 1
iπA(ω)

∫
dkD′1(kg,k,ω)qeiq(εg+εs)D′n−1(k,ks,ω), (1)
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Free-surface multiple removal

where kg, ks and ω represent the Fourier conjugates of receiver,
source, and time, respectively. εg and εs are the receivers’
and sources’ depth below the free surface, respectively. The
obliquity factor q is given by q = sgn(ω)

√
ω2/c2

0− k2, and
c0 is the reference velocity. The FSME algorithm only re-
quires the source signature A(ω) and source and receiver side
deghosted data D′1(kg,k,ω) as its input. The free-surface mul-
tiples are predicted order-by-order and then added together
give the deghosted and free-surface demultipled data D′(kg,ks,ω)
=
∑∞

n=1 D′n(kg,ks,ω).

For source-array data, the ISS FSME algorithm can only pre-
dict multiples approximately. To incorporate the source array,
the FSME algorithm is extended from a single point source to
a source array with a radiation pattern, as follows:

D′n(kg,ks,ω)

= 1
iπ
∫

dk
ρ(k,q,ω)

D′1(kg,k,ω)qeiq(εg+εs)D′n−1(k,ks,ω), (2)

where ρ(k,q,ω) is the projection of source signature in the
f -k domain and k2 + q2 = ω2/c2

0. The projection of source
signature ρ(k,q,ω) can be directly achieved from the refer-
ence wavefield that is separated from the measured data by us-
ing Green’s theorem method (Weglein and Secrest, 1990) by
choosing air-water as its reference medium.

The key point is to obtain the projection of source signature
ρ(k,q,ω) from the reference wavefield. We assume that the
source array is invariant from one shot to the next. In other
words, the geometry or the distribution of the source array re-
mains for each shot. The direct reference wavefield Pd

0 for a
2D case can be expressed as an integral of the direct reference
Green’s function Gd

0 over all air-guns in an array,

Pd
0 (x,z,xs,zs,ω)

=
∫

dx′dz′ρ(x′,z′,ω)Gd
0(x,z,x

′+ xs,z′+ zs,ω), (3)

where (x,z) and (xs,zs) are the prediction point and source
point, respectively. (x′,z′) is the distribution of the source with
respect to the source locator (xs,zs). Using the bilinear form
of Green’s function and Fourier transforming over x, we obtain
the relationship between ρ and Pd

0 as

Pd
0 (k,z,xs,zs,ω) = ρ(k,q,ω)

eiq|z−zs|

2iq
eikx. (4)

Since k2 +q2 = ω2/c2
0, q is not a free variable, hence, we can

not obtain ρ(x,z,ω) in space-frequency domain by taking an
inverse Fourier transform on ρ(k,q,ω). However, the projec-
tion of the source signature ρ(k,q,ω) can always be achieved
directly from the direct reference wavefield Pd

0 in the f -k do-
main, where the variable k or q represent the amplitude varia-
tions of the source signature with angles. Ikelle et al. (1997)
also proposed a similar quantity A(k,ω), the inverse source
wavelet, and solved it indirectly using the energy minimiza-
tion criterion.

Substituting the projection of the source signature ρ(k,q,ω)
into the inverse scattering free-surface removal subseries, the
new FSME algorithm (equation 2) can be derived (Yang and
Weglein, 2012). The new algorithm accommodates a source

(and receiver) array and can provide added value for the fi-
delity of amplitude and phase prediction of free surface mul-
tiples at all offsets. The new FSME algorithm is fully multi-
dimensional and does not require any subsurface information.
Therefore, it is consistent with Green’s theorem methods that
provide all the data requirements. The new FSME algorithm
(equation 2) is also consistent with the previous FSME algo-
rithm (equation 1) when the source array reduces to a point
source.

NUMERICAL TESTS

In this section, we will show numerical tests of the free-surface
multiple removal for the source-array data with overlapping
or interfering primaries and multiples. The numerical tests
are based on a 1D acoustic model with varying velocity and
constant density, as shown in Figure 1. The model has one

Figure 1: One-dimensional acoustic constant-density medium.

shallow reflector at 90m, hence, the primary is interfering and
overlapping with the free-surface multiples. The depths of the
source and receiver are 13m and 18m, respectively. Using the
Cagniard-de Hoop method, the synthetic data are generated by
a source array (Figure 2) that contains nine air-guns in one
line with 24m range. The advantage of the Cagniard-de Hoop

Figure 2: Source array with nine air-guns.

method is that we can accurately calculate any specific event
we are interested in, so that we can compare it with the results
predicted by the FSME algorithm. Here, we assume that the
source array only varies laterally with identical source signa-
tures, but the assumption is not necessary in the ISS FSME
theory.

The tests are organized as follows: We first preprocess the gen-
erated source-array data using Green’s theorem methods. After
data preprocessing, we input the data into the previous FSME
(equation 1) and the new FSME (equation 2) algorithms to
predict and remove free-surface multiples and compare their
results.

Data preprocessing by using Green’s theorem methods

Figure 3(a) illustrates the data set generated by a source ar-
ray with nine air-guns using the Cagniard-de Hoop method.
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Free-surface multiple removal

For simplicity, only the primary and the first-order free-surface
multiple and their corresponding ghosts are generated. As we
discussed above, Green’s theorem methods are consistent with
the new FSME method, because they are multidimensional
and do not require any subsurface information. Furthermore,
Green’s theorem methods do not care about the source dis-
tribution, hence, the source-array data can be preprocessed by
Green’s theorem methods to satisfy the data requirement of the
FSME algorithm. When choosing the air-water as the refer-
ence medium, Green’s theorem wave separation method sep-
arates the total wavefield P (Figure 3(a)) into two parts: the
reference wavefield P0 (Figure 3(b)) and the scattered wave-
field Ps (Figure 4(a)). After wave separation, Green’s the-
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Figure 3: Wave separation and deghosting

orem deghosting method is needed to deghost the reference
wavefield and the scattered wavefield by choosing the whole
space of water as its reference medium. Figure 3(c) shows
the direct reference wavefield Pd

0 by deghosting the reference
wavefield P0. It can be seen that most of far offset energies
are recovered. Figures 3(d), 3(e), and 3(f) represent the wig-
gle plots of the zero-offset traces. We can see that the ref-
erence wavefield is separated and its ghost is removed very
well. From the spectra plots, we can see that the low fre-
quency information is boosted, as shown in Figures 3(g), 3(h),
and 3(i). Figures 4(b) and 4(c) illustrate the scattered wave-
field Ps after removing the receiver-side ghosts and source &
receiver ghosts, respectively. Figures 4(d), 4(e), and 4(f) are
the wiggle plots of the zero-offset traces and Figures 4(g),

4(h), and 4(i) are their corresponding spectra plots. The notch
at c0/2d = 1500/(2 ∗ 18) ≈ 42Hz is removed after receiver
side deghosting. Both receiver side deghosting and source side
deghosting recover more low frequency information and do not
touch the primary.
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Figure 4: Deghosting the scattered wavefield

Free-surface multiple removal

With all data requirements satisfied, we input them into the
previous FSME (equation 1) and the new FSME (equation 2)
algorithms to predict and remove free-surface multiples and
compare their results. The source and receiver side deghosted
data (Figure 4(c)) are reploted in Figure 5(a) to show more de-
tails. Figure 5(b) is its corresponding wiggle plot for a small
window (times from 1.0s to 1.4s and traces from 1330 to 1420);
we can see that the primary and the first-order free-surface
multiple are overlapping when the offset exceeds approximately
1000m. Furthermore, in Figure 5(b) it can be seen that they
are destructively overlapping. Therefore, the adaptive subtrac-
tion method can be invalid or fail for this kind of situation,
because the method is based on the energy minimization crite-
rion, which assumes that the energy of the data will be mini-
mized after the multiples are removed. However, in this case,
the energy increases after removal of the multiples.

First, we apply the previous FSME algorithm (equation 1) to
predict free-surface multiples. It predicts phase accurately but
an approximate amplitude. After removing the free-surface
multiple, Figure 5(c) shows that most multiples are removed,
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Free-surface multiple removal

but there are still some residual multiples. Whether this result
is valuable or not depends on the objective. If the amplitude is
not critical, then this method is sufficient. For cases like AVO
analysis and inversion, in which amplitude is important, such
residual multiples could produce errors in the prediction.
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Figure 5: The left column are the input data and after free-
surface multiple removal using the previous and new FSME
algorithms. The right column are their corresponding wiggle
plots for a small window (times from 1.0s to 1.4s and traces
from 1330 to 1420).

Next, the new FSME algorithm (Equation 2) is used to pre-
dict free-surface multiples. It can predict both amplitude and
phase accurately for the source-array data at all offsets. Af-
ter a simple subtraction, all the multiples are eliminated com-
pletely, as shown in Figure 5(e). Therefore, the new FSME
algorithm works very well for the source-array data that have
interfering events. Comparing Figures 5(f) and 5(d), we can

see that the primary is still affected by the residual multiple
in Figure 5(d), while in Figure 5(f), the primary remains un-
touched as the original primary. Figure 6 illustrates the detail
of comparison for one trace at offset = 1800m. After removing
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T
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Figure 6: Red: the original primary in the input data; Blue:
after multiple removal using the previous FSME algorithm;
Green dash: after multiple removal using the new FSME al-
gorithm.

free-surface multiple using the new algorithm, the primary is
the same as the original one in the input data, while using the
previous algorithm, the primary (Figure 5(d)) is a little weaker
than the original primary, and this amplitude error will seri-
ously affect AVO analysis.

CONCLUSIONS

A new FSME algorithm is proposed and tested on source-array
data that have interfering primaries and multiples. The new
FMSR algorithm accommodates a source (and receiver) array
and can provide added value compared to previous methods for
the fidelity of amplitude and phase prediction of free surface
multiples at all offsets. If all prerequisites are provided, the
new FSME algorithm, in principle, has the ability to predict
free-surface multiples precisely, and removing them through
a simple subtraction. All prerequisites can be achieved using
Green’s theorem methods by choosing different reference me-
dia. The new FSME algorithm is consistent with Green’s the-
orem methods. They are both multidimensional and do not
need any subsurface information. The numerical tests show
that for source-array data, the previous isotropic source FSME
algorithm can only predict phase accurately but amplitude ap-
proximately. This amplitude error can seriously affect the pre-
diction results, such as AVO analysis and inversion, when a
multiple intersects a primary. The new FSME algorithm could
accommodate array data and eliminate free-surface multiples
without damaging primaries.
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